Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499327

RESUMO

Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.


Assuntos
Sirtuínas , Humanos , Células HEK293 , Sirtuínas/genética , Sirtuínas/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Signal Transduct Target Ther ; 8(1): 455, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105263

RESUMO

Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
3.
Protein Sci ; 32(10): e4767, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615343

RESUMO

RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.


Assuntos
Quinases raf , Proteínas ras , Humanos , Sítio Alostérico , Hidrólise , Quinases raf/química , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo
4.
Fish Shellfish Immunol ; 137: 108772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100311

RESUMO

Glyphosate is an herbicide commonly used worldwide, and its substantial use causes widespread pollution with runoff. However, research on glyphosate toxicity has mostly remained at the embryonic level and existing studies are limited. In the present study, we investigated whether glyphosate can induce autophagy in hepatic L8824 cells by regulating energy metabolism and rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling by activating nitric oxide (NO). First, we selected 0, 50, 200, and 500 µg/mL as the challenge doses, according to the inhibitory concentration of 50% (IC50) of glyphosate. The results showed that glyphosate exposure increased the enzyme activity of inducible nitric oxide synthase (iNOS), which in turn increased the NO content. The activity and expression of enzymes related to energy metabolism, such as hexokinase (HK)1, HK2, phosphofructokinase (PFK), phosphokinase (PK), succinate dehydrogenase (SDH), and nicotinamide adenine dinucleotide with hydrogen (NADH), were inhibited, and the RAS/RAF/MEK/ERK signaling pathway was activated. This led to the negative expression of mammalian target of rapamycin (mTOR) and P62 in hepatic L8824 cells and the activation of the autophagy marker genes microtubule-associated proteins light chain 3 (LC3) and Beclin1 to induce autophagy. The above results were dependent on glyphosate concentration. To verify whether autophagy can be excited by the RAS/RAF/MEK/ERK signaling pathway, we treated L8824 cells with the ERK inhibitor U0126 and found that the autophagy gene LC3 was reduced due to the inhibition of ERK, thus demonstrating the reliability of the results. In conclusion, our results demonstrate that glyphosate can induce autophagy in hepatic L8824 cells by activating NO, thus regulating energy metabolism and the RAS/RAF/MEK/ERK signaling pathway.


Assuntos
Fibrossarcoma , MAP Quinase Quinase Quinases , Animais , Óxido Nítrico , Reprodutibilidade dos Testes , Quinases raf/genética , Transdução de Sinais , MAP Quinases Reguladas por Sinal Extracelular , Linhagem Celular , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metabolismo Energético , Autofagia , Sistema de Sinalização das MAP Quinases , Mamíferos/metabolismo
5.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36990093

RESUMO

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Assuntos
Quinases raf , Proteínas ras , Dimerização , Consenso , Proteínas ras/genética , Proteínas ras/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Lipídeos , Proteínas Proto-Oncogênicas c-raf/metabolismo
6.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36175670

RESUMO

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Assuntos
Síndrome de Noonan , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosfosserina/metabolismo , Proteína Fosfatase 1 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
7.
Gene ; 842: 146757, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907565

RESUMO

BACKGROUND: Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is associated with multiple diseases, but its pathogenesis in colon cancer (CC) is ambiguous and needs further study so that this research explores the function of ALDH6A1 in CC. METHODS: The level of ALDH6A1 in colon adenocarcinoma (COAD), CC tissues, and cells was measured by starBase v2.0, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. Post transfection with overexpressed (oe)-ALDH6A1, cell biological behaviors, as well as apoptosis-, matrix metalloproteinase (MMP)-, and rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway-related markers were measured by cell function experiments, qRT-PCR, and western blot. Next, the effects of small interfering RNA targeting ALDH6A1 (si-ALDH6A1) and RAS/RAF inhibitor (MCP110) on cell biological behaviors, as well as apoptosis-, MMP-, and RAS/RAF/MEK/ERK pathway-related markers were detected again. RESULTS: ALDH6A1 was low-expressed in COAD, CC tissues, and cells. Oe-ALDH6A1 weakened cell vitality, migration and invasionbut facilitated apoptosis; while it reduced expression levels of Bcl-2, MMP-2, MMP-9 and the RAS/RAF/MEK/ERK pathway-related markers but promoted Bax level. However, the regulation of si-ALDH6A1 on cell biological behaviors and related genes was opposite to that of oe-ALDH6A1. Moreover, MCP110 rescued the regulation of si-ALDH6A1 on cell biological behaviors, expressions of apoptosis- MMP- as well as RAS/RAF/MEK/ERK pathway-related markers. To sum up, ALDH6A1 attenuated CC progression by down-regulating the expressions of RAS/RAF/MEK/ERK pathway-related markers.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Fibrossarcoma , Linhagem Celular , Neoplasias do Colo/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
8.
Commun Biol ; 5(1): 101, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091687

RESUMO

The MITF transcription factor and the RAS/RAF/MEK/ERK pathway are two interconnected main players in melanoma. Understanding how MITF activity is regulated represents a key question since its dynamic modulation is involved in the phenotypic plasticity of melanoma cells and their resistance to therapy. By investigating the role of ARAF in NRAS-driven mouse melanoma through mass spectrometry experiments followed by a functional siRNA-based screen, we unexpectedly identified MITF as a direct ARAF partner. Interestingly, this interaction is conserved among the RAF protein kinase family since BRAF/MITF and CRAF/MITF complexes were also observed in the cytosol of NRAS-mutated mouse melanoma cells. The interaction occurs through the kinase domain of RAF proteins. Importantly, endogenous BRAF/MITF complexes were also detected in BRAF-mutated human melanoma cells. RAF/MITF complexes modulate MITF nuclear localization by inducing an accumulation of MITF in the cytoplasm, thus negatively controlling its transcriptional activity. Taken together, our study highlights a new level of regulation between two major mediators of melanoma progression, MITF and the MAPK/ERK pathway, which appears more complex than previously anticipated.


Assuntos
Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases raf/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Quinases raf/genética
9.
Cancer Discov ; 12(4): 899-912, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046094

RESUMO

The RAS GTPases are frequently mutated in human cancer, with KRAS being the predominant tumor driver. For many years, it has been known that the structure and function of RAS are integrally linked, as structural changes induced by GTP binding or mutational events determine the ability of RAS to interact with regulators and effectors. Recently, a wealth of information has emerged from structures of specific KRAS mutants and from structures of multiprotein complexes containing RAS and/or RAF, an essential effector of RAS. These structures provide key insights regarding RAS and RAF regulation as well as promising new strategies for therapeutic intervention. SIGNIFICANCE: The RAS GTPases are major drivers of tumorigenesis, and for RAS proteins to exert their full oncogenic potential, they must interact with the RAF kinases to initiate ERK cascade signaling. Although binding to RAS is typically a prerequisite for RAF to become an activated kinase, determining the molecular mechanisms by which this interaction results in RAF activation has been a challenging task. A major advance in understanding this process and RAF regulation has come from recent structural studies of various RAS and RAF multiprotein signaling complexes, revealing new avenues for drug discovery.


Assuntos
Quinases raf , Proteínas ras , Humanos , Sistema de Sinalização das MAP Quinases , Oncogenes , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
10.
Genes Chromosomes Cancer ; 61(3): 131-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34755412

RESUMO

Embryonal rhabdomyosarcoma (ERMS) is the most common subtype of rhabdomyosarcoma (RMS). Among RMS subtypes, ERMS is associated with a favorable outcome with an overall survival of 70% at 5 years for localized disease. The molecular profile of ERMS is heterogeneous, including mostly point mutations in various genes. Therapeutic strategies have remained relatively consistent irrespective of the molecular abnormalities. In this study, we focus on a homogeneous RAS/RAF mutated ERMS subset and correlate with clinicopathologic findings. Twenty-six cases (16 males and 10 females) were identified from screening 98 ERMS, either by targeted DNA sequencing (MSK-IMPACT) or by Sanger sequencing. Fourteen (54%) cases had NRAS mutations, 6 (23%) had KRAS mutations, 5 (19%) had HRAS mutations, and 1 case (4%) had BRAF mutation. Median age at diagnosis was 8 years (range 1-70) with two-thirds occurring in the children. Tumor sites varied with H&N and GU sites accounting for 62% of cases. RAS isoform hot spot mutations predominated: NRAS p.Q61K (57%), KRAS p.G12D (67%), and HRAS (codons 12, 14, and 61). Additional genetic abnormalities were identified in 85% of the RAS-mutated cases. At last follow-up, 29% of patients died of disease and 23% were alive with disease. The 3-year and 5-year survival rates were 75% and 61% respectively. In conclusion, RAS mutations occur in 27% of ERMS, with NRAS mutations encompassing half of the cases. Overall RAS-mutant RMS does not correlate with age or site, but most tumors show an undifferentiated and spindle cell morphology.


Assuntos
Mutação/genética , Rabdomiossarcoma Embrionário , Quinases raf/genética , Proteínas ras/genética , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/mortalidade , Rabdomiossarcoma Embrionário/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/mortalidade , Neoplasias de Tecidos Moles/patologia , Neoplasias Urogenitais/genética , Neoplasias Urogenitais/mortalidade , Neoplasias Urogenitais/patologia , Adulto Jovem
11.
J Neuropathol Exp Neurol ; 80(12): 1099-1107, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34850053

RESUMO

Brain tumors are the most common solid tumor in children, and low-grade gliomas (LGGs) are the most common childhood brain tumor. Here, we report on 3 patients with LGG harboring previously unreported or rarely reported RAF fusions: FYCO1-RAF1, CTTNBP2-BRAF, and SLC44A1-BRAF. We hypothesized that these tumors would show molecular similarity to the canonical KIAA1549-BRAF fusion that is the most widely seen alteration in pilocytic astrocytoma (PA), the most common pediatric LGG variant, and that this similarity would include mitogen-activated protein kinase (MAPK) pathway activation. To test our hypothesis, we utilized immunofluorescent imaging and RNA-sequencing in normal brain, KIAA1549-BRAF-harboring tumors, and our 3 tumors with novel fusions. We performed immunofluorescent staining of ERK and phosphorylated ERK (p-ERK), identifying increased p-ERK expression in KIAA1549-BRAF fused PA and the novel fusion samples, indicative of MAPK pathway activation. Geneset enrichment analysis further confirmed upregulated downstream MAPK activation. These results suggest that MAPK activation is the oncogenic mechanism in noncanonical RAF fusion-driven LGG. Similarity in the oncogenic mechanism suggests that LGGs with noncanonical RAF fusions are likely to respond to MEK inhibitors.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Fusão Oncogênica/genética , Quinases raf/genética , Adolescente , Neoplasias Encefálicas/metabolismo , Criança , Feminino , Glioma/metabolismo , Humanos , Masculino
12.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946644

RESUMO

Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Neoplasias , Proteína Oncogênica p21(ras) , Quinases raf/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Quinases raf/genética
13.
Nat Commun ; 12(1): 6274, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725361

RESUMO

Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant.


Assuntos
Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Guanosina Trifosfato/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Mutação de Sentido Incorreto , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
14.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638749

RESUMO

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) has been identified as a group of enzymes that catalyze cytosine deamination in single-stranded (ss) DNA to form uracil, causing somatic mutations in some cancers. We analyzed the APOBEC3 family in 33 TCGA cancer types and the results indicated that APOBEC3s are upregulated in multiple cancers and strongly correlate with prognosis, particularly in low grade glioma (LGG). Then we constructed a prognostic model based on family expression in LGG where the APOBEC3 family signature is an accurate predictive model (AUC of 0.85). Gene mutation, copy number variation (CNV), and a differential gene expression (DEG) analysis were performed in different risk groups, and the weighted gene co-expression network analysis (WGCNA) was employed to clarify the role of various members in LGG; CIBERSORT algorithm was deployed to evaluate the landscape of LGG immune infiltration. We found that upregulation of the APOBEC3 family expression can strengthen Ras/MAPK signaling pathway, promote tumor progression, and ultimately reduce the treatment benefits of Raf inhibitors. Moreover, the APOBEC3 family was shown to enhance the immune response mediated by myeloid cells and interferon gamma, as well as PD-L1 and PD-L2 expression, implying that they have immunotherapy potential. Therefore, the APOBEC3 signature enables an efficient assessment of LGG patient survival outcomes and expansion of clinical benefits by selecting appropriate individualized treatment strategies.


Assuntos
Desaminases APOBEC , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma , Modelos Biológicos , Inibidores de Proteínas Quinases/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Quinases raf , Desaminases APOBEC/biossíntese , Desaminases APOBEC/genética , Intervalo Livre de Doença , Feminino , Glioma/tratamento farmacológico , Glioma/enzimologia , Glioma/genética , Glioma/mortalidade , Humanos , Masculino , Taxa de Sobrevida , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/metabolismo
15.
Cell Rep Med ; 2(7): 100350, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337566

RESUMO

Inhibition of the extracellular signal-regulated kinases ERK1 and ERK2 (ERK1/2) offers a promising therapeutic strategy in cancers harboring activated RAS/RAF/MEK/ERK signaling pathways. Here, we describe an orally bioavailable and selective ERK1/2 inhibitor, ASN007, currently in clinical development for the treatment of cancer. In preclinical studies, ASN007 shows strong antiproliferative activity in tumors harboring mutations in BRAF and RAS (KRAS, NRAS, and HRAS). ASN007 demonstrates activity in a BRAFV600E mutant melanoma tumor model that is resistant to BRAF and MEK inhibitors. The PI3K inhibitor copanlisib enhances the antiproliferative activity of ASN007 both in vitro and in vivo due to dual inhibition of RAS/MAPK and PI3K survival pathways. Our data provide a rationale for evaluating ASN007 in RAS/RAF-driven tumors as well as a mechanistic basis for combining ASN007 with PI3K inhibitors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Mutação/genética , Neoplasias/enzimologia , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Quinases raf/genética , Proteínas ras/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Concentração Inibidora 50 , Camundongos Nus , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299137

RESUMO

The KRAS mutation is one of the leading driver mutations in colorectal cancer (CRC), and it is usually associated with poor prognosis and drug resistance. Therapies targeting the epidermal growth factor receptor (EFGR) are widely used for end-stage CRC. However, patients with KRAS mutant genes cannot benefit from this therapy because of Ras signaling activation by KRAS mutant genes. Our previous study revealed the anti-proliferative effect of 4-acetyl-antroquinonol B (4-AAQB) on CRC cells, but whether the drug is effective in KRAS-mutant CRC remains unknown. We screened CRC cell lines harboring the KRAS mutation, namely G12A, G12C, G12V and G13D, with one wild type cell line as the control; SW1463 and Caco-2 cell lines were used for further experiments. Sulforhodamine B assays, together with the clonogenicity and invasion assay, revealed that KRAS-mutant SW1463 cells were resistant to cetuximab; however, 4-AAQB treatment effectively resensitized CRC cells to cetuximab through the reduction of colony formation, invasion, and tumorsphere generation and of oncogenic KRAS signaling cascade of CRC cells. Thus, inducing cells with 4-AAQB before cetuximab therapy could resensitize KRAS-mutant, but not wild-type, cells to cetuximab. Therefore, we hypothesized that 4-AAQB can inhibit KRAS. In silico analysis of the publicly available GEO (GSE66548) dataset of KRAS-mutated versus KRAS wild-type CRC patients confirmed that miR-193a-3p was significantly downregulated in the former compared with the latter patient population. Overexpression of miR-193a-3p considerably reduced the oncogenicity of both CRC cells. Furthermore, KRAS is a key target of miR-193a-3p. In vivo treatment with the combination of 4-AAQB and cetuximab significantly reduced the tumor burden of a xenograft mice model through the reduction of the expression of oncogenic markers (EGFR) and p-MEK, p-ERK, and c-RAF/p-c-RAF signaling, with the simultaneous induction of miR-193a-3p expression in the plasma. In summary, our findings provide strong evidence regarding the therapeutic effect of 4-AAQB on KRAS-mutant CRC cells. Furthermore, 4-AAQB effectively inhibits Ras singling in CRC cells, through which KRAS-mutant CRC can be resensitized to cetuximab.


Assuntos
Biomarcadores Tumorais/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Ubiquinona/análogos & derivados , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Prognóstico , Células Tumorais Cultivadas , Ubiquinona/química , Ubiquinona/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Mol Biol Cell ; 32(19): 1838-1848, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260260

RESUMO

p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Quinases raf/metabolismo , Diferenciação Celular , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência/métodos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Quinases raf/genética
18.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068624

RESUMO

Melanoma cells are resistant to most anticancer chemotherapeutics. Despite poor response rates and short-term efficacy, chemotherapy remains the main approach to treating this cancer. The underlying mechanisms of the intrinsic chemoresistance of melanoma remain unclear, but elucidating these mechanisms is important to improve the efficacy of chemotherapy regimens. Increasing evidence suggests that sirtuin 2 (SIRT2) plays a key role in the response of melanoma cells to chemotherapeutics; thus, in the present study, we evaluated the impact of shRNA-mediated and pharmacological inhibition of SIRT2 on the sensitivity of melanoma cells to cisplatin, which is used in several regimens to treat melanoma patients. We found that cells with SIRT2 inhibition revealed increased sensitivity to cisplatin and exhibited increased accumulation of γ-H2AX and reduced EGFR-AKT-RAF-ERK1/2 (epidermal growth factor receptor-protein B kinase-RAF kinase-extracellular signal-regulated kinase 1/2) pathway signaling compared to control cells. Thus, our results show that sirtuin 2 inhibition increased the in vitro efficacy of cisplatin against melanoma cells.


Assuntos
Cisplatino/farmacologia , Melanoma/tratamento farmacológico , Sirtuína 2/genética , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt , Sirtuína 2/antagonistas & inibidores , Quinases raf/genética
19.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931501

RESUMO

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.


Assuntos
Proteínas 14-3-3/genética , Proteínas de Caenorhabditis elegans/genética , Atrofia Muscular Espinal/genética , Degeneração Neural/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Quinases raf/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Fibroblastos , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/genética , Medula Espinal
20.
Genes (Basel) ; 12(4)2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920182

RESUMO

Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Quinases raf/metabolismo , Proteínas ras/antagonistas & inibidores , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Quinases raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...